skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trenary, Laurie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper derives statistical models for predicting wintertime subseasonal temperature over the western US. The statistical models are trained on two separate datasets, namely observations and dynamical model simulations, and are based on least absolute shrinkage and selection operator (lasso). Surprisingly, statistical models trained on dynamical model simulations can predict observations better than observation-trained models. One reason for this is that simulations involve orders of magnitude more data than observational datasets. 
    more » « less
  2. Abstract This paper proposes an approach to diagnosing the skill of a machine-learning prediction model based on finding combinations of variables that minimize the normalized mean square error of the predictions. This technique is attractive because it compresses the positive skill of a forecast model into the smallest number of components. The resulting components can then be analyzed much like principal components, including the construction of regression maps for investigating sources of skill. The technique is illustrated with a machine-learning model of week 3–4 predictions of western US wintertime surface temperatures. The technique reveals at least two patterns of large-scale temperature variations that are skillfully predicted. The predictability of these patterns is generally consistent between climate model simulations and observations. The predictability is determined largely by sea surface temperature variations in the Pacific, particularly the region associated with the El Nino-Southern Oscillation. This result is not surprising, but the fact that it emerges naturally from the technique demonstrates that the technique can be helpful in “explaining” the source of predictability in machine-learning models. 
    more » « less